Game Changing by Phonon Control 国立大学法人 千葉大学 National University Corporation Chiba University Corporation

UV-IR emission Device material properties Solar Cell material properties Photonic physics Optical characterization of Phonon transport Novel devices by phonon transport control

Innovation toward IR – THz emission devices by phonon and quantum interference

PHONON CONTROL

Novel device design concept

Control of total energy including thermal energy and electronic energy

Further, Phonon as the protagonist +Quantum interference

Instruments

Fs laser+ ps time resolved luminescence measurement

Extremely low temperature \sim RT

- Raman scattering using multiple lasers Nano-micrometer imaging
- FTIR : reflection, radiation, transmission up to 650 K
- **D** Device processing : 1 μ m structure
- **Given Sem Cathode Luminescence**

Laser: 266nm, 325nm, 336nm, 400nm, 532nm, 980nm, 1064nm, 1500nm, nitrogen laser

https://www.iwasaki.co.jp/optics/chishiki/uv/02.html

Strong electron-LO phonon interaction of widegap materials

IUV LED and LD by phonon exclusion control and high efficiency solar cell by phonon control

Proposal of phononic-excitonic-radiative model and theoretical analysis of exciton and biexciton dynamics

The dynamics of electron-hole pairs (excitons), like hydrogen atoms, is analyzed by the integration of whole energy species of electron and phonon systems. This methodology is applied to UV emission system.

D Experimental analysis using time resolved photoluminescence.

Spectroscopy in wide photon energy region from UV to infrared region: excitonic emission and emission related to deep levels. Emission in mid infrared and THz region is detected by an FTIR system.

K. Oki *et al*. Phys. Rev. B **96**, 205204 (2017), Y. Ishitani *et al*. Jpn. J. Appl. Phys. **58**, SCCB34 (2019), D. Uehara *et al*. Appl. Phys. Exp. **13**, 061003 (2020)

Control of energy in nano space : control of phonon transport Application to LED, LD, HEMT, Solar Cells

Using double laser beams on to the sample surface: One for phonon generation and the other for Raman probing

S. Okamoto et al. Appl. Phys. Lett. 116, 142107 (2020)

THz-mid IR emission by LO phonon and the underlaying physics – quantum interference etc.

Electric dipole emission of LO phonon resonant THz-IR light
 Fundamentals of quantum interference in phonon system
 THz-IR optical analysis

Y. Ishitani *et al.* Appl. Phys. Lett. **113**, 192105 (2018)

Microstructures of GaAs-Au 8.5THz emission peak Research topics for game changing by phonon transport control

UV and visible light emission	 Emission augmentation by controlling phonon processes Application of PXR-model to 2D and 1D system 2D crystal by controlling 1ML and its application to UV emitter TCSPC software, fs laser and TCSPC, effective meas. by CCD camera Advantage of III-nitrides in visible light emission
Phonon transport analysis	 Space-time resolved Raman imaging using two laser beams Thermal analysis of multilayers Control of thermal capacity and phonon velocity
THz emission	 THz – mid IR emission by metal-semiconductor microstructures Augmentation of THz emission : stimulated emission of phonon Fano effect and THz emission by optical excitation of indirect transition materials
Quantum interference THz laser	 Radiation from indirect transition type material by optical excitation Quantum interference of 2 LO-valence band transition using alloys